fbpx
หน้าแรกบทความฟีเจอร์สำรวจของ Instagram ที่ใช้ AI ในการทำงาน

ฟีเจอร์สำรวจของ Instagram ที่ใช้ AI ในการทำงาน

Author

Date

Category

แชร์บทความน่าสนใจได้ที่นี่

ผู้ใช้งาน Instagram สามารถเข้าใช้งานฟีเจอร์สำรวจของ Instagram ทุกเดือนได้ เพื่อค้นหาภาพถ่าย วิดีโอ และเรื่องราวใหม่ๆ ที่เกี่ยวข้องกับความสนใจของผู้ใช้ โดยจะมีการแนะนำเนื้อหาที่เกี่ยวข้องมากที่สุดในแบบเรียลไทม์ ซึ่ง Instagram จะจัดการกับความสิ่งเหล่านี้ โดยการสร้างชุดของภาษาคิวรีที่กำหนดเทคนิคการสร้างแบบจำลอง และเครื่องมือที่ใช้การทดลองความเร็วสูง ระบบเหล่านี้จะรองรับการสำรวจ ในขณะที่เพิ่มประสิทธิภาพโดยรวมแล้วโซลูชั่นเหล่านี้จะเป็นตัวแทนของระบบ AI

การพัฒนาโครงสร้างพื้นฐานของการสำรวจ

ก่อนที่ Instagram จะสามารถสร้างเครื่องมือแนะนำที่จัดการปริมาณภาพถ่าย และวิดีโอที่อัพโหลดทุกวันบน Instagram นั้น Instagram ต้องการความสามารถในการทำการทดลองอย่างรวดเร็ว โดย Instagram จำเป็นต้องได้รับสัญญาณที่แรงขึ้นตามความสนใจของผู้คน และต้องการวิธีที่มีประสิทธิภาพในการคำนวณ เพื่อให้แน่ใจว่าคำแนะนำนั้นมีคุณภาพ เทคนิคที่กำหนดเองเหล่านี้ จะเป็นกุญแจสำคัญในการทำให้บรรลุเป้าหมายด้วย

IGQL : ภาษาเฉพาะโดเมนใหม่

การสร้างอัลกอริทึมที่เหมาะสม และเทคนิคที่เป็นพื้นที่ต่อเนื่องของการวิจัยในชุมชน ML กระบวนการในการเลือกระบบที่เหมาะสมอาจแตกต่างกันไปตามงาน โดยทีมวิศวกรรมของ Instagram จะทำอัลกอริทึมที่แตกต่างกัน และต้องการวิธีที่จะลองใช้ความคิดใหม่ๆ อย่างมีประสิทธิภาพ และนำแนวคิดที่มีแนวโน้มไปใช้กับระบบขนาดใหญ่ได้อย่างง่ายดาย

Instagram ต้องการ meta-language เฉพาะโดเมนที่กำหนดเอง ซึ่งให้ระดับที่เหมาะสมของนามธรรมและรวบรวมอัลกอริทึมทั้งหมดไว้ในที่เดียว การดำเนินการถูกปรับให้เหมาะสมใน C ++ ซึ่งช่วยลดทั้งเวลาในการตอบสนอง และทรัพยากรในการคำนวณ นอกจากนี้ยังสามารถขยายได้ และใช้งานง่ายขึ้น วิศวกรสามารถเขียนอัลกอริทึมการแนะนำในลักษณะคล้าย Python และดำเนินการอย่างรวดเร็ว และมีประสิทธิภาพใน C ++

ในตัวอย่างโค้ดด้านบนผู้ใช้สามารถดูว่า IGQL ให้ความสามารถในการอ่านสูงได้อย่างไร สำหรับวิศวกรที่ไม่ได้ใช้ภาษาอย่างกว้างขวาง จะช่วยรวบรวมขั้นตอนการเสนอแนะ และอัลกอริทึมหลายขั้นตอนด้วยหลักการ IGQL ทำให้ง่ายต่อการปฏิบัติงานที่พบได้ทั่วไปในระบบที่ซับซ้อน

Instagram มีบัญชีที่เน้นความสนใจจำนวนมากตามธีมที่เฉพาะเจาะจง โดย Instagram จะสรุปการใช้งานบัญชีโดยใช้ ig2vec ซึ่งเป็นกรอบงานการฝังคำแบบ 2vec ด้วยการใช้เทคนิคเดียวกันจาก word2vec สามารถทำนายบัญชีที่บุคคลมีแนวโน้มที่จะโต้ตอบในเซสชั่นที่กำหนดภายในแอพ Instagram เมื่อเทียบกับบัญชีแบบสุ่มจากบัญชี Instagram หลากหลาย สิ่งนี้จะช่วยให้สามารถระบุบัญชีที่คล้ายคลึงกันได้

หลังจากที่ได้ใช้ ig2vec เพื่อระบุบัญชีที่เกี่ยวข้องมากที่สุดตามความสนใจของแต่ละบุคคล ซึ่ง Instagram จะต้องการวิธีการจัดอันดับบัญชีเหล่านี้ในแบบใหม่ และน่าสนใจสำหรับทุกคน การตั้งค่าพฤติกรรมการล้อเลียนของแบบจำลองจะลดความจำเป็นในการปรับแต่งพารามิเตอร์หลายตัว และรักษาหลายรุ่นในระยะการจัดอันดับที่แตกต่างกัน การใช้ประโยชน์จากเทคนิคนี้จะสามารถประเมินชุดสื่อที่มีขนาดใหญ่ขึ้นได้อย่างมีประสิทธิภาพ เพื่อค้นหาสื่อที่เกี่ยวข้องมากที่สุดในทุกการจัดอันดับ ในขณะที่รักษาทรัพยากรการคำนวณไว้ภายใต้การควบคุมได้อีกด้วย

วิธีที่ Instagram ใช้สร้างฟีเจอร์สำรวจ

Instagram จะแบ่งระบบสำรวจคำแนะนำออกเป็น 2 ขั้นตอนหลัก คือ

  1. ขั้นตอนการสร้างผู้สมัคร

อันดับแรกจะใช้ประโยชน์จากบัญชีที่ผู้คนเคยมีปฏิสัมพันธ์มาก่อนบน Instagram เพื่อระบุว่าบัญชีอื่นๆ ที่คนอื่นๆ อาจสนใจ จะเป็นเพียงบัญชีใน Instagram ที่มีความคล้ายคลึงกัน หรือมีความสนใจเหมือนกัน จากนั้นใช้เทคนิคการจัดวางบัญชีเพื่อระบุบัญชีที่คล้ายคลึงกับบัญชีเริ่มต้น สุดท้ายตามบัญชีเหล่านี้จะสามารถหาสื่อที่บัญชีเหล่านี้โพสต์ หรือมีส่วนร่วมได้

แหล่งที่มาประเภทต่างๆ สามารถค้นหาได้นับหมื่นคนสำหรับบุคคลทั่วไป Instagram ต้องการให้แน่ใจว่าเนื้อหาที่แนะนำนั้นปลอดภัย และเหมาะสมสำหรับชุมชนหรือไม่ ด้วยการใช้สัญญาณที่หลากหลาย โดยจะกรองเนื้อหาที่สามารถระบุได้ว่าไม่มีสิทธิ์ได้รับการแนะนำ ก่อนที่จะสร้างคลังโฆษณาที่มีสิทธิ์สำหรับแต่ละคน จากนั้นสำหรับการร้องขอการจัดอันดับทุกครั้งจะระบุสื่อที่มีสิทธิ์นับพันรายการสำหรับคนทั่วไป ตัวอย่างผู้สมัคร 500 คนจากคลังโฆษณาที่มีสิทธิ์

  1. ขั้นตอนการจัดอันดับ

จากจำนวน 500 ผู้สมัครที่มีอยู่สำหรับการจัดอันดับ Instagram จะใช้โครงสร้างพื้นฐานการจัดอันดับ 3 ขั้นตอน เพื่อช่วยปรับสมดุลการแลกเปลี่ยนระหว่างความเกี่ยวข้องการจัดอันดับ และประสิทธิภาพการคำนวณ

  1. First pass : แบบจำลองการกลั่นจะเลียนแบบการรวมกันของสองขั้นตอนด้วยคุณสมบัติขั้นต่ำ โดยเลือกผู้สมัครที่มีคุณภาพสูงสุด 150 คน และผู้ที่เกี่ยวข้องมากที่สุดจาก 500 คน
  2. รอบที่ 2 : โมเดลโครงข่ายประสาทเทียมที่มีน้ำหนักเบา พร้อมคุณสมบัติที่มีความหนาแน่นสูง เลือกผู้สมัครที่มีคุณภาพ และมีความเกี่ยวข้องสูงสุด 50 คน
  3. Final pass : โมเดลโครงข่ายประสาทเทียมแบบลึก พร้อมชุดคุณสมบัติที่หนาแน่น และเต็มรูปแบบ เลือกผู้สมัครที่มีคุณภาพสูงสุด และเหมาะสมที่สุด 25 คน (สำหรับหน้าแรกของตารางสำรวจ)

 

เกาะติดข่าวสารการตลาดออนไลน์ เทคนิคการโปรโมทโฆษณา

แค่กดเป็นเพื่อนกับ ไลน์@inDigital ที่นี่

เพิ่มเพื่อน

Fanpage : INdigital การตลาดออนไลน์

เว็บไซต์ : www.indigital.co.th

ที่มา : ai.facebook

ทิ้งคำตอบไว้

กรุณาใส่ชื่อของคุณที่นี่
กรุณาใส่ความคิดเห็นของคุณ!

Linda Barbara

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum imperdiet massa at dignissim gravida. Vivamus vestibulum odio eget eros accumsan, ut dignissim sapien gravida. Vivamus eu sem vitae dui.

Recent posts

Recent comments